Exercise 3.4.10

Modify Exercise 3.4.9 if instead $\partial u / \partial x(0, t)=0$ and $\partial u / \partial x(L, t)=0$.

Solution

Assuming that u is continuous on $0 \leq x \leq L$, it has a Fourier cosine series expansion.

$$
\begin{equation*}
u(x, t)=A_{0}(t)+\sum_{n=1}^{\infty} A_{n}(t) \cos \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

Because $\partial u / \partial t$ is piecewise smooth, the series can be differentiated with respect to t term by term.

$$
\frac{\partial u}{\partial t}=A_{0}^{\prime}(t)+\sum_{n=1}^{\infty} A_{n}^{\prime}(t) \cos \frac{n \pi x}{L}
$$

And because u is continuous, the cosine series can be differentiated with respect to x term by term.

$$
\frac{\partial u}{\partial x}=\sum_{n=1}^{\infty}\left(-\frac{n \pi}{L}\right) A_{n}(t) \sin \frac{n \pi x}{L}
$$

Since u_{x} is also continuous on $0 \leq x \leq L$ and $u_{x}(0, t)=u_{x}(L, t)=0$, term-by-term differentiation of this sine series with respect to x is justified.

$$
\frac{\partial^{2} u}{\partial x^{2}}=\sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) A_{n}(t) \cos \frac{n \pi x}{L}
$$

Substitute these infinite series into the PDE.

$$
A_{0}^{\prime}(t)+\sum_{n=1}^{\infty} A_{n}^{\prime}(t) \cos \frac{n \pi x}{L}=k \sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) A_{n}(t) \cos \frac{n \pi x}{L}+q(x, t)
$$

Bring both series to the left side.

$$
A_{0}^{\prime}(t)+\sum_{n=1}^{\infty} A_{n}^{\prime}(t) \cos \frac{n \pi x}{L}+k \sum_{n=1}^{\infty}\left(\frac{n^{2} \pi^{2}}{L^{2}}\right) A_{n}(t) \cos \frac{n \pi x}{L}=q(x, t)
$$

Combine the series and factor the summand.

$$
\begin{equation*}
A_{0}^{\prime}(t)+\sum_{n=1}^{\infty}\left[A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)\right] \cos \frac{n \pi x}{L}=q(x, t) \tag{2}
\end{equation*}
$$

This is the Fourier cosine series expansion of $q(x, t)$; because $q(x, t)$ is piecewise smooth, it's valid. To obtain $A_{0}(t)$, integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L}\left\{A_{0}^{\prime}(t)+\sum_{n=1}^{\infty}\left[A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)\right] \cos \frac{n \pi x}{L}\right\} d x=\int_{0}^{L} q(x, t) d x
$$

Split up the integral on the left and bring the constants in front.

$$
A_{0}^{\prime}(t) \underbrace{\int_{0}^{L} d x}_{=L}+\sum_{n=1}^{\infty}\left[A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)\right] \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0}=\int_{0}^{L} q(x, t) d x
$$

Evaluate the integrals.

$$
A_{0}^{\prime}(t)(L)=\int_{0}^{L} q(x, t) d x
$$

Divide both sides by L to obtain the ODE for $A_{0}(t)$.

$$
A_{0}^{\prime}(t)=\frac{1}{L} \int_{0}^{L} q(x, t) d x
$$

Integrate both sides with respect to t.

$$
A_{0}(t)=\frac{1}{L} \int^{t} \int_{0}^{L} q(x, s) d x d s+C_{1}
$$

The lower limit of integration is arbitrary and can be set to zero. C_{1} will be adjusted to account for any choice that's made.

$$
A_{0}(t)=\frac{1}{L} \int_{0}^{t} \int_{0}^{L} q(x, s) d x d s+C_{1}
$$

To get $A_{n}(t)$, multiply both sides of equation (2) by $\cos \frac{p \pi x}{L}$, where p is an integer,

$$
A_{0}^{\prime}(t) \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left[A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)\right] \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}=q(x, t) \cos \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L}\left\{A_{0}^{\prime}(t) \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left[A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)\right] \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}\right\} d x=\int_{0}^{L} q(x, t) \cos \frac{p \pi x}{L} d x
$$

Split up the integral on the left and bring the constants in front.

$$
A_{0}^{\prime}(t) \underbrace{\int_{0}^{L} \cos \frac{p \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty}\left[A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)\right] \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L} d x=\int_{0}^{L} q(x, t) \cos \frac{p \pi x}{L} d x
$$

Since the cosine functions are orthogonal, the second integral on the left is zero if $n \neq p$. Only if $n=p$ is it nonzero.

$$
\left[A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)\right] \int_{0}^{L} \cos ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} q(x, t) \cos \frac{n \pi x}{L} d x
$$

Evaluate the integral on the left.

$$
\left[A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)\right] \frac{L}{2}=\int_{0}^{L} q(x, t) \cos \frac{n \pi x}{L} d x
$$

The ODE that $A_{n}(t)$ satisfies is then

$$
A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)=\frac{2}{L} \int_{0}^{L} q(x, t) \cos \frac{n \pi x}{L} d x
$$

which is a first-order linear inhomogeneous ODE, so it can be solved by using an integrating factor I.

$$
I=\exp \left(\int^{t} \frac{k n^{2} \pi^{2}}{L^{2}} d s\right)=\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

Multiply both sides of the ODE by I.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) A_{n}(t)=\left[\frac{2}{L} \int_{0}^{L} q(x, t) \cos \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

The left side can be written as $d / d t\left(I A_{n}\right)$ by the product rule.

$$
\frac{d}{d t}\left[\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) A_{n}(t)\right]=\left[\frac{2}{L} \int_{0}^{L} q(x, t) \cos \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

Integrate both sides with respect to t.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) A_{n}(t)=\int^{t}\left[\frac{2}{L} \int_{0}^{L} q(x, s) \cos \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C_{2}
$$

The lower limit of integration is arbitrary and can be set to zero. C_{2} will be adjusted to account for any choice that's made.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) A_{n}(t)=\int_{0}^{t}\left[\frac{2}{L} \int_{0}^{L} q(x, s) \cos \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C_{2}
$$

Solve for $A_{n}(t)$.

$$
A_{n}(t)=\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\left\{\int_{0}^{t}\left[\frac{2}{L} \int_{0}^{L} q(x, s) \cos \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C_{2}\right\}
$$

An initial condition is needed to determine C_{1} and C_{2}. Use equation (1) along with $u(x, 0)=f(x)$ to determine them.

$$
u(x, 0)=A_{0}(0)+\sum_{n=1}^{\infty} A_{n}(0) \cos \frac{n \pi x}{L}=f(x)
$$

These coefficients are known,

$$
\begin{aligned}
& A_{0}(0)=\frac{1}{L} \int_{0}^{L} f(x) d x \\
& A_{n}(0)=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x,
\end{aligned}
$$

so C_{1} and C_{2} are as well.

$$
\begin{aligned}
& A_{0}(0)=C_{1}=\frac{1}{L} \int_{0}^{L} f(x) d x \\
& A_{n}(0)=C_{2}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
A_{0}(t) & =\frac{1}{L} \int_{0}^{t} \int_{0}^{L} q(x, s) d x d s+\frac{1}{L} \int_{0}^{L} f(x) d x \\
& =\frac{1}{L}\left[\int_{0}^{t} \int_{0}^{L} q(x, s) d x d s+\int_{0}^{L} f(x) d x\right] \\
A_{n}(t) & =\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\left\{\int_{0}^{t}\left[\frac{2}{L} \int_{0}^{L} q(x, s) \cos \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x\right\} \\
& =\frac{2}{L}\left\{\int_{0}^{t} \int_{0}^{L} q(x, s) \cos \frac{n \pi x}{L} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d x d s+\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x\right\} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right),
\end{aligned}
$$

and the solution to the PDE is

$$
\begin{aligned}
u(x, t)= & A_{0}(t)+\sum_{n=1}^{\infty} A_{n}(t) \cos \frac{n \pi x}{L} \\
= & \frac{1}{L}\left[\int_{0}^{t} \int_{0}^{L} q(x, s) d x d s+\int_{0}^{L} f(x) d x\right] \\
& +\sum_{n=1}^{\infty} \frac{2}{L}\left\{\int_{0}^{t} \int_{0}^{L} q(x, s) \cos \frac{n \pi x}{L} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d x d s+\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x\right\} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L} .
\end{aligned}
$$

